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LETTER TO THE EDITOR

Hidden symmetry in a conservative equation for nonlinear
growth
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Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK

Received 4 October 1996

Abstract. Growth equations for nonlinear deposition are considered from the perspective of
fluid dynamics and the theory of turbulence. A nonlinear equation which conserves mass is
found, contrary to current belief (Hwa T and Kardar M 1992Phys. Rev.A 45 7002), to possess
shift symmetry.

In recent years it has become clear that a diverse range of complicated physical phenomena,
such as interface growth or the dynamics of polymers in random media or the behaviour
of flame fronts, can be usefully described by quite simple stochastic partial differential
equations (PDES) [1, 2]. The processes by which such equations are obtained owe much
to the subject of macroscopic fluid dynamics, while their subsequent analysis has to
some extent been influenced by the theory of fluid turbulence [3–8]. In this letter we
show that lessons learned from turbulence theory can also illuminate the formulation and
choice of the governing PDES. In particular, a rigorous distinction between mean and
fluctuating variables, and careful choice of appropriate frames of reference, can reveal
hidden symmetries in conservative growth equations.

In order to concentrate on a specific physical problem, we shall choose the topic of
nonlinear deposition. In particular, we consider a granular material being poured into a bin.
As the material in the bin builds up, one is interested in the fluctuations in the heightH(x, t)

of the free surface, as measured from the base of the bin. The specification of the problem
may be completed by representing the pouring process in terms of a sourceS(x, t), such that

S(x, t) = S(x, t) + η(x, t) (1)

whereS in the mean value ofS and η is the fluctuation about the mean. It follows, of
course, that〈η(x, t)〉 = 0, where〈. . .〉 denotes the operation of taking means. It is usual to
takeη to have a Gaussian distribution, but this will not concern us here.

It follows from (1) that the instantaneous surface height may also be written as the sum
of a mean and a fluctuation, thus

H(x, t) = H(x, t) + h(x, t) (2)

whereH is the mean,h is the fluctuation and again〈h〉 = 0. We should note that the
restriction of the deposition process to a bin andS(x, t) = S(t) allows us to assume that
the mean height does not depend on the spatial coordinates and hence that

∇H = 0 (3)

or H(x, t) ≡ H(t) only.
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On the basis of a ‘blob’ model, which ascribed some liquid properties to the motion of
the powder, Edwards and Wilkinson [3] obtained linear Langevin equations for the Fourier
modes of the surface growth. In real space, and in our present notation, these lead to the
form

∂H

∂t
= ν∇2H + S(x, t)

or, in the frame of reference of the mean interface,

∂h

∂t
= ν∇2h + η(x, t) (4)

whereν is a real constant and represents the effects of surface tension. We shall refer to this
as the EW equation. These authors also discussed the possibility of introducing a nonlinear
term of form (∇h)2, but it was left to Kardar, Parisi and Zhang (KPZ) [4] to formally
introduce a physical basis for such a term.

KPZ argued that surface growth would take place locally normal to the interface. When
this effect is resolved in the vertical direction, it leads to a nonlinear contribution toδh

which can be added on to the EW equation for time intervalδt . The resulting equation is
usually written as

∂h

∂t
= ν∇2h + λ

2
(∇h)2 + η(x, t). (5)

We note (a) thatλ is another real constant; and (b) that this equation is described as being
‘in the co-moving frame’ [4].

Equation (5) is the famous KPZ equation and it has had an enormous influence on
this whole subject. However, as is well known, it does not conserve mass. Hence its
use may not be appropriate in applications where conservation of mass is believed to be a
requirement. Indeed, as a general proposition, one might say that the more appropriately
a discrete system can be modelled as being in the hydrodynamic limit, then arguably the
more necessary it is that it should satisfyall the equations of hydrodynamics.

This aspect has been discussed by Hwa and Kardar [9], in the context of avalanches
in sandpiles. They note that in hydrodynamics, conservation of mass takes the form of the
continuity equation, viz.

∂h

∂t
+ ∇ · j = η (6)

wherej is the current or flux ofh. A conservative alternative to the KPZ equation can be
obtained by writing the current as

j = −ν∇h − λh∇h (7)

and substituting into equation (6), with the result

∂h

∂t
= ν∇2h + λ∇ · (h∇h) + η(x, t). (8)

This equation appears as equation (34) in the paper by Hwa and Kardar and it is worth
quoting what they say about it, thus:

‘It looks somewhat like the equation that describes the evolution of growing
interfaces [i.e. the KPZ equation], but is in fact quite different because it does
not have the symmetryh → h + constant.’
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Perhaps for this reason, it seems that equation (8) has largely been ignored as a starting
point for studies of nonlinear growth. However, it is our opinion that the model behind
equation (8) does have shift symmetry and that it is merely a matter of distinguishing more
clearly between mean and fluctuating variables in order to reveal this fact. To do this, we
follow the standard procedure in turbulence (originally due to Reynolds in the late 1800s!).
That is, we begin with the equation of motion for the instantaneous variableH and then
make the decompositions (1) and (2). The method will be illustrated first by application
to the KPZ equation, which we now write in terms of the instantaneous height. Clearly it
must take the form

∂H

∂t
= ν∇2H + λ

2
(∇H)2 + S(x, t). (9)

Now we substitute (1) and (2) in equation (9), average all terms, and, recalling equation
(3), obtain

∂H

∂t
= λ

2
(∇h)2 + S (10)

for the mean interface height. Also, subtracting (10) from (9), yields

∂h

∂t
= ν∇2h + λ

2

[
(∇h)2 − (∇h)2

]
+ η (11)

for the fluctuating heighth(x, t). Equation (10) shows the so-called excess velocity [1],
where even whenS = 0 there is a transient mean velocity until the surface is flat. Equation
(11) is the correct form of the KPZ equation in a frame moving with the mean interface.
Note that both sides of equation (11) vanish when averaged. Normally in the literature
equation (5) represents both the mean and fluctuating aspects, but we think that the formal
separation into equations (10) and (11) is an aid to clarity.

Let us now apply this approach to the conservative nonlinear growth equation. In order
to derive an equation forH , in the frame of reference of the bin, we add the mean velocity
to each side of equation (6), and express the current as given by (7) in terms ofH using
(2). Substituting (7) forj into equation (6), and recalling (3), then leads to

∂H

∂t
= ν∇2H + λ∇ · ([H − H ]∇H) + S(x, t). (12)

Then following our procedure with the KPZ equation we write the mean and fluctuating
equations (analogous to (10) and (11)) as

∂H

∂t
= S (13)

and

∂h

∂t
= ν∇2h + λ∇ · (h∇h) + η (14)

where in both equations we have relied on the spatial homogeneity of the moment
h∇h in order to set its gradient equal to zero. Now we note that the transformation
H → H + constant is equivalent toH → H + constant,h is unaffected, and equations
(12)–(14) are invariant under this transformation.

From equation (13), we see that there is no transient mean velocity when the source
term is switched off. This is in contrast to equation (10) for the KPZ model and reflects
the conservative nature of (6), in that re-adjustments of the interface height are carried
out at constant volume. However, like the KPZ equation as given by (11), both sides of
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equation (14) average to zero. Similar remarks may apply to other nonlinear growth models
for which shift symmetry appears to be absent but, as here, is merely hidden.

Physically, it would be a contradiction in terms to demand shift symmetry directly for
h, as this would involve leaving the co-moving frame by means of a symmetry-breaking
acceleration. This consideration may be seen as especially relevant to the basic conservative
model as given by equation (7).

However, if we replace the KPZ equation by equation (14), then there is a price to
pay. The KPZ equation exhibits a form of ‘Galilean invariance’ whereas (14) does not.
In the present context, the significance of Galilean invariance in fluid dynamics is that this
symmetry simplifies the application of renormalization group (RG) methods to stirred fluid
motion [10]. An analogous simplification has been justified in the case of the KPZ equation,
as follows.

Galilean invariance is claimed for the KPZ equation because the change of variable
v = −∇h transforms it into the Burgers equation, which is known to be Galilean invariant†.
However, irrespective of the merits or otherwise of this argument, equation (5) is invariant
under an infinitesimal transformation (e.g. see [5])

h′ = h + ε · x x′ = x − λεt t = t′ (15)

which corresponds to the tilting of the mean interface through a small angleε. This
symmetry relies on a cancellation at orderO(ε), and is exactly analogous to Galilean
invariance if a termO(ε2) is neglected. We shall make two further remarks about this.

First, for the modified form of the KPZ equation given by (11), cancellation of terms
at O(ε2) makes this an exact symmetry.

Second, it is easily shown that the nonlinear term in equation (14) generates extra
terms O(ε) which break this symmetry. This has consequences for the renormalization
group solution of (14), which differs from that of the KPZ equation [9]. Basically, the
requirement of Galilean invariance supresses the renormalization of the strength parameter
λ in the latter case.

Having said that, we conclude by remarking that perturbative RG in fluid dynamics [10],
being restricted to weak coupling, has no application to Navier–Stokes turbulence. Later
implementations of RG for turbulence [11, 12], based on iterative conditional averaging,
lead to fixed points corresponding to scaling behaviour associated with strong coupling.
Such approaches may be relevant to nonlinear growth problems; but ironically their most
likely extension would be to the KPZ equation in view of the shared Galilean invariance.
An investigation of this point will be the subject of future work.

We are grateful to Michael Cates for much help and advice with the preparation of this paper.
We also thank Martin Evans for a helpful discussion. One of us (RVRP) acknowledges with
thanks the financial support of the University of Edinburgh during the period of this work.
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